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ABSTRACT

A summary is given of recent developments in aeroelastic optimization,
with emphasis -on difficulties encountered in treating examples numerically by
adaptation of techniques from optimal control theory. The elementary problem
of finding the unswept wing of least skin mass for fixed torsional divergence speed
is used to show how a numerical transition-matrix solution is easily obtained
that reproduces accurately the analytical solution. Other problems are then
considered to illustrate the application of transition-matrix or gradient methods
where solutions are not so easily found. One such problem is to determine the
minimum-mass skin thickness distri'bution of an unswept wing with fixed pure-
torsional flutter speed and frequency. In this case the analytical treatment reveals
th?.t only certain ranges of the system parameters will allow a physically meaningful
solution. Other problems of more practical importance, such as the‘minimum-
weight sandwich panel for fixed flutter eigenvalues and the minimum-weight
unswept wing for fixed speed and frequency of bending-torsion flutter, are treated
in various ways. An attempt is made to identify those methods most likely to be
successful and to outline some of the difficulties involved in applying them to

aeroelastic optimization,

iii



TABLE OF CONTENTS

Page
NOMENCLATURE . . . . o ¢ v it e e e e e e e e e et o e e e e e u \4
I. INTRODUCTION; SURVEY OF PREVIOUSWORK . .. ... .... 1
II. A STATIC AEROELASTIC CONSTRAINT: TORSIONAL
DIVERGENCE . . . . . . ¢ v e v v v v oo e v e e e e e e e 6
ITII, A DYNAMIC AEROELASTIC CONSTRAINT: BENDING-TORSION
FLUTTER . . . o v o v vt e v e e e st e ot o oo oo o us 7
IV. A DYNAMIC AEROELASTIC CONSTRAINT: PANEL FLUTTER. . . 19
V. CONCLUDINGREMARKS . .. ... ¢+ ¢ o e e e e e e e e e, 24
REFERENCES . . ... .. .... Ve e e e e e e e e e e e e e e 27
FIGURES .......... e e e e e e e e e e e e e e e e e e e e e e 29

iv



m

AR

EI

GJ

NOMENCILATURE

Modal amplitude - see Eqs. (44)

Aspect ratio, L/2B for rectangular wing
Modal amplitude - see Egs. (44)
Dimensional wing semichord

Modal amplitude - see Eqs. (44)
Dimensional panel chord

Dimensionless distance between elastic axis and line of centers
of gravity, D/B

Modal amplitude - see Eqs. (44)

Dimensional distance between elastic axis and line of centers
of gravity, positive for c. g. line aft of e. a.

Sandwich panel stiffness parameter, EHZT(X)/ 4(1 - vz) (E here
is Young's modulus)

Stiffness parameter for uniform or constant-thickness sandwich

panel, ET3/12(1 - 1/2) or EH2T0/4(1 - Vz) (E here is Young's

modulus)

Dimensionless distance between elastic axis and line of aero-
dynamic centers, E/B

Dimensional distance between elastic axis and line of aerody-
namic centers, positive for a.c. line forward of e. a.

Flexural rigidity
Euler-Lagrange functional
Torsional rigidity

Dimensional panel core depth

Section mass moment of inertia about elastic axis
v



Reduced frequency, wB/V

4 2
Dimensionless panel parameter, MOC W /DO - iho(w C/V) (MOZO—Z)/(MOZO~1)

4
Dimensionless panel reference parameter, MOC w2/ D

Wing semispan

Dimensionless oscillatory aerodynamic lift coefficients -~ see Ref. 13

Section 1ift, positive upward

Ratio of optimized mass to reference mass - see Eq. (1) or Eq. (26)

Dimensional panel or wing mass distribution

Dimensionless oscillatory aerodynamic moment coefficients -
see Ref. 13

Section pitching moment about elastic axis, positive nose up
Free-stream Mach number

Dimensional panel in-plane load

Intermediate physical variable - see Egs. (14)

Intermediate physical variable - see Eqgs. (14)

Free-stream dynamic pressure, poon/Z

Intermediate physical variable - see Egs. (14)
Dimensionless section radius of gyration, (Ioz/ MBZ) 1/2
Dimensionless panel in-plane load, NXCZ/D0
Intermediate physical variable - see Egs. (14)
Section static unbalance, MD

Dimensionless thickness distribution, T/ T0

Modal amplitude for thickness distribution

Dimensional thickness distribution

Free~-stream speed

vi



&

s =

»

Dimensionless .%)I_{_xplitude of panel displacement --
W(x, T) = w(x)e

Dimensionless panel displacement , W/C
Dimensional panel midsurface displacement
Dimensionless space coordinate -- X/L for wing, X/C for panel

Dimensional space coordinate - spanwise for wing, chordwise
for panel

Dimension_less ?ox}_lrplitude of section elastic-axis displacement --
Y(X, T) =y(x)e

Modal amplitude for y

Dimensional section elastic-axis displacement, positive downward

Dimensionless parameters for wing and panel - see Egs. (9) and Eqs{38)

Fraction of total mass effective structurally

. . . - iwr
Amplitude of section rotation -- @(X,T) = g (x)e
Modal amplitude for g

Section rotation, positive nose up
Lagrange multipliers or adjoint variables

. 3 2 . 1/2
Panel dynamic-pressure parameter, 2q OoC / DO(M o 1)

2

Panel-air mass ratio, M O/TrpooB
Poisson's ratio
Free-stream mass density

Dimensional time

Frequency



2
wy Reference bending frequency, (EI/ M0L4) v
. 2 1/2
we Reference torsional frequency, (GJy/ Ia L")
Subscripts
{ )0 Quantities for reference system--system with uniform thickness

and same aeroelastic eigenvalues as optimized system

Superscripts

()

Complex quantities

H
() Differentation with respect to x
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I. INTRODUCTION; SURVEY OF PREVIOUS WORK

The introduction of stiffness constraints, and in particular truly aero-
elastic constraints, into the weight optimization of structures has a relatively
recent history. The earliest examples of this work known to the authors are a
series of reports by Lunn and others and Hodson, Refs. 1-3. A formal optimi-
zation process such as that described herein was not used, but in its stead those
investigators used some very insightful intuitive criteria, such as the require-
ment of uniform torsional stress throughout the structure for optimality (minimum
structural weight) at divergence. Schmit and Thornton4 imposed a lower bound
on the flutter speed, among a number of other constraints, in their synthesis
of an airfoil for minimum total drag work. The merit function is different, but
this analysis is a good illustration of the sophistication that can be achieved for
more realistic situations where multiple constraints are necessary. The first
published paper with a constraint on a natural frequency was apparently that of
Niordsons; this approach was continued by Taylor6 and Prager and Taylor7,
who studied a wide class of both static and dynamic problems and presented im-
portant proofs of uniqueness and optimality in certain cases. Taylor'7 also
suggested that in many instances it may be profitable to interchange the roles of
the constraint eigenvalue and the merit function. For example, the minimum-
weight bar for fixed lowest natural frequency of axial vibration can be found in
two ways: one can maximize the frequency for fixed total mass, or one cen
minimize the mass for fixed frequency. The latter approach was followed by
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Turner ° , who also introduced for the first time a distinctly aeroelastic con-
straint into a minimum-weight problem.

It is possible to distinguish two different approaches toward aeroelastic

optimization:

(1) The structure is idealized and its degrees of freedom
limited by the use of, say, finite-element techniques, so that
one is led naturally to the solution of algebraic equations.

’” are representative of this point of view,

Turner's papers
for which the motivation is to achieve the capability of treating
complex built-up structures representative of actual design.

It goes without saying that any sort of aeroelastic optimization
procedure for use in the design of actual hardware must make
use of such approximate techniques.

(2) Simplified (and therefore less realistic) structures are
examined, so that the solutions may be found by differential-
equation methods, This search for solutions in function space
will, it is believed, make it possible to explore to the fullest
the potentials of aeroelastic optimization and to seek results

of general applicability. It is also emphasized that there are
as yet many important theoretical questions, such as that con-
cerning uniqueness for problems with dynamic aeroelastic con-

straints, that remain unanswered. These certainly merit further

study in connection with elementary examples whose mathematical

description is not too complicated.
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The formulation of the problem is next discussed in a general way.
The figure of merit will in all céses be weight, expressed as an appropriate
integral of some material thickness distribution, but there is no reason that
other mass-related figures of merit, such as total moment of inertia, could
not be taken instead. An appropriate relation is found between the thickness
distribution and the stiffness distribution, so that the latter's dependence on
thickness appears explicitly.

Reference quantities for the corresponding uniform-thickness system
with the same aeroelastic eigenvalue are used to render all variables dimen-
sionless. Thus, for example, if the optimum thickness distribution T(X) is
made dimensionless by division by the skin thickness T 0 of the aforementioned
reference system, the ratio of the optimized weight to the reference weight is

simply

L 1
m =f[T(X)/LT0]dX =ft(x)dx )
0 0

where X = LX. The constraint equations are the appropriate aeroelastic
equations, organiz e d into an equivalent system of first-order ordinary

differential equations:

1
- ty=0,i=12, ..., 2
9, fi(ql, qN,) i N (2)

The qi(x) represents the N dependent variables along with the unknown
thickness distribution t(x), x being a spatial coordinate measuring distance
along the one-dimensional structure. The dependence of the equations on time
has been eliminated, if appropriate, by the usual assumption of simple harmonic

3



motion. A functional is formed, consisting of the thickness distribution to be
optimized augmented by Lagrange multipliers ?\i(x) factoring in the constraint

equations:
N
= A -q'
F t+12‘=,1 (£ - al) (3)

Conditions for an extremum of this functional are given by the Euler-Lagrange

equations:
d OF oF
dX( ')—8q "'0,1"1’ 2! sN

a »
qi 1

(4)

d oF
.._.(___') -—=
dxat ot

There are therefore 2N-l unknowns - the N q;s the N ?\i, and t -~ and 2N+1
equations -- the N+1 Euler-Lagrange equations plus the N constraint equations,
Boundary conditions are provided for the physical variables qi by the manner
in ;vhich the system is restrained at its extremities and for the adjoint variables
}\i by the transversality conditionslo. The equations are nonlinear, involving
products or quotients of t and certain of the qi or Ai. In addition, the problem
is a two-point boundary-value problem. It is therefore usually too complicated
to solve analytically, except in certain simple cases, so that a numerical
iteration scheme must be employed. In general, there is no a priori guarantee
that a physically meaningful solution exists, nor is there any assurance that

an optimal solution, once found, is the absolute optimum. In light of these
considerations, it was speculated that some of the numerical techniques of
optimal control theory (as described in Ref. 11, for example) might be readily

adapted to the solution of such problems. Subsequent sections of this paper will
4



describe applications of these techniques to several problems involving both

static and dynamic aeroelastic constraints.



II. A STATIC AEROELASTIC CONSTRAINT: TORSIONAL DIVERGENCE

A simple problem that has the virtue of possessing an analytical solu-
tion for comparison with numerical results is that of finding the unswept canti-
lever wing, of rectilinear or straight-tapered planform, with the least skin
weight for fixed torsional divergence speed. Such a wing is illustrated in
Fig. 1. The planform and airfoil section are fixed, and the torsional stiffness
is assumed to be dominated by contributions from a thin outer skin of thickness
T(x). The equations resulting from an optimization scheme as described in
Sect. I are easily solved analytically and yield for a Wing of rectilinear plan-
form the skin thickness distribution shown in Fig. 2, which is reproduced from
Ref. 12. The skin thickness T(x) has been rendered dimensionless by division
by the skin thickness T 0 of a constant-thickness wing with the same planform
and'divergence speed, so on the plot of Fig. 2t = 1. 0 represents the distribution
of the reference wing. The skin weight of the "optimum" wing is 82%of that
of the reference wing. Superimposed on the analytically derived curve are
points calculated numerically by a transition-matrix procedure (Ref. II, Sect., 7. 3).
This procedure will be discussed in more detail in Sect. III; here it is sufficient
to note that one encountered virtually no difficulties in applying it. After some
15 iterations beyond the initial estimate of the unknown boundary conditions at
the root, the numerical solution reproduced the analytical solution extremely
accurately. The initial guesses were varied to test the sensitivity of the pro-
cedure to their inaccuracies. Although an exhaustive study was not made, it did
appear that the solution process was relatively insensitive to these variations, in

the sense that a fairly naive initial guess could be made without confoundingthe procedure.
6



III. A DYNAMIC AEROELASTIC CONSTRAINT: BENDING-TORSION FLUTTER

Another problem which has received considerable attention involves
finding the unswept cantilever rectangular wing of least skin weight for fixed
speed (or speed and frequency) of bending-torsion flutter. The notation is
shown in Fig.3. The equations of motion for this wing, treated as a beam with

infinite chordwise rigidity, can be written as follows:

) )
9 > (EI §)+M §+s 0 @2 = L (X, )
)4 5X or 9
(9)
2 2
3 3@ 90 9Y
8X(GJ ax) I 8'1'2 Sa - 5 = —MX(X,T)

The aerodynamic loading is decomposed into a section lift LY(X, T),
poéitive upward, and a section pitching moment MX(X, T), positive nose up.
With the assumption of simple harmonic motion and the use of incompressible
strip theory for the aerodynamic loads, L v and MXcan be written as functions of
the air density, speed, frequency, semichord B, elastic-axis offset E, and the
amplitudes of the motion, as described, for example, in Ref. 13. It is also
assumed that EI(X) and GJ(X) are determined primarily by the sectional skin
thickness T(X) and are in fact proportional to it. Finally, it is supposed for
present purposes that the mass associated with the skin is the dominant part
of the total section mass, so that M(X) is also proportional to T(X). With

the zero subscript denoting the properties of the reference wing, the proportionality



assumptions can be written as
EI(X) = EIOt(X)
GI(X) = GJ 0‘c(X) (6)

M(X) = M H(X)

where
uX)=TQQ/TO (7)

T
3

Simple harmonic motion is now assumed, so that Y(X,7) = Ly(x)ew
— iwT
(X, T) =g (x)e @ . Bars are placed over complex quantities, and primes
denote differentiation with respect to x = X/L. With the time dependence

canceled out after nondimensionalization, Egs. (5) become

1T

(ty ) -(t+a,)F- (Bt +B,) 7 =0

X _ 8)
(t5) +(Vt+T)T +(6,t+5)5=0

where
o = @ /wy)z, 3, = (w/wy)z T /v,
2 — 2 — - 2
%=Mmm@y,%=@hy @a—ﬂfm%,

(9)

2,2 _ 2 - 2
v = dAR(w/we) /T s Vo= AR(0 /we) (M, -eL)/u r

2 — — - 2. 2
61= (w/we) , 62 = (w/we)z [Moz - e(La +Mh) +e Ih]/pra

The quantities ih’ ioz’ M, , and Ma are tabulated functions of reduced frequency

h

13
k =wB/V. The other parameters appearing in Egs. (9) are functions of

airstream and reference-wing properties as defined in the Nomenclature.



Boundary conditions are those appropriate for a cantilever root,
]
y=¥ =8=0,x=0 (10)

and for a free tip,

\L LA !

ty =(tF) =tg =0,x=1 (11)

To obtain the equations that must be satisfied for an optimal solution,
one forms a functional F incorporating as constraints Egs. (8), written in
expanded form as outlined in Sect. I. Since these relations are complex,
however, the functional must be modified slightly to assure that t(x) remains
real. The Euler-Lagrange equations are therefore written for a functional

9
defined as follows:
— 1 — __"‘ 1
F=t+RelA (-7 )+A @/t-p )
y p
SX(F-T)+A [0t +&,)F +(Bt +B)B - T ] (12)
q T 1 2 1 2
— 1 — — 1
A (8/t-B A - Y)Y - (6 5 )8 -8
+ o (8/t-8 )+ S[ (vlt Y)Y = (04t + 2)6 s ]
That is, one appends to the unconstrained merit function t(x) the real part of
the products of the complex Lagrange multipliers, or adjoint variables, and

the expanded constraint equations. Applying Eqgs. (4) to F as defined above,

with the qi now representing the real and imaginary parts of 9, q, T, ¥, 8,

and g, produces 13 Euler-Lagrange equations. These can be written in compact

form as
3 x AR
A= - (ot +d (7t +
y (al 0‘2) T (yl 72) ]
-_— ! —
A ==A
p y

9 (continued)



p

-_— ! ——

A ==A

T q (13)
-— ! —_— - — —

A = - A ) A

5 (Blt+52) r+( 1t+e52) <
-1 ——

A == A /t

s 2]

-—,2 = — —_— T -2 T - —
A - A A A =
Re pQ/t 1,(ozly +BB) * es/’c + S(yly + 619) 1
It is interesting to note that forming an F so that t(X) remains real, as in
Eq. (12), affects only the control equation (the last of Egs. (13) above). With that

exception, Eqs. (13) are the same as those that would be found from a complex F.

The system of equations is completed by the constraint equations, 12 in all:

1

y =bp
p =/t
__'
q =T
' — - —
T = (ot +3,)7 + (Bt +B,) B ()
' —
g =58/t
! — = -
§ == (Vlt +72)y - (Glt +62)9
The physical boundary conditions become (cf. Egs. (10)-(11) )
y=p=g=0, x=0
(15)
g=r=5=0, x=1

The remaining boundary conditions are given by the transversality condition,
which in this case merely requires that the Lagrange inultipliers corresponding

10



to the physical variables unspecified at the boundaries be zero:
(16)

The transition-matrix algorithm was then attempted with Egs. (13)-(14),
subject to the boundary conditions, Egs. (15)-(16). The algorithm proceeds as
follows:*

(a) Along with the 12 known variables at x = 0, estimate

starting values for the other 12 that are not known - the

complex values of §(0), (0), §(0), Xy(O), Xp(O), 7\6(0).

The control equation gives a starting value for t, since it

can be rewritten to give t algebraically as a function of the

other dependent variables.

(b) Integrate the 24 differential equations, Eqs. (13)-(14),
from x = 0 to x = 1, using the control equation to calculate

t as the integration proceeds. Record the final values of

the variables that are specified at x = 1 - (1), (1), §(1),v
Xy(l), ?_kp(l), 7\6(1). These, in general, will not be the values

desired.

*
It is remarked that no solution has yet been obtained for the bending -

torsion. flutter problem by the procedure here detailed. It is, however, included
for two reasons. First, it did form the basis for successful examples reported
in Ref. 12. Second, the authors are confident that, with refined means for
establishing initial estimates and other such improvements, the transition
matrix will prove the most efficient route to solution of differential-equation
systems of the type encountered here.

1n



(c) Estimate the partial derivatives oq(l)/8q(90), 9r(1)/9G(0), etc., by
incrementing in turn by small amounts one and only one of

the 12 guessed initial values, integrating the equations each

time over the span, and dividing the changes in the final

values by the increment in the initial value. These inte-

grations are performed a total of 12 times. Each integra-

tion with one increment will give a column of partial deriva-

tives, and therefore a 12 x 12 matrix is filled column by

column. For example, the first column might be the

partial derivatives of the 12 final values with respect to

the real part of q(0), the second column might be the deriva-

tives with. re-spect to the imaginary part of q(0), and so on, Let this

matrix be called [TR] and let {QI} and {QF}denote

column matrices of, respectively, the values of the variables
unspecified at x = 0 and the current values of the variables
specified at x = 1. Then, in a small neighborhood of the
solution just found with the initial guess for {QI}, one adopts

the approximation
(g} = 1mR) faq) (In)

(d) Calculate the desired changes in the current final values as

pod-fu

Here € is a positive number between zero and unity, which
determines in effect how great a step towards the solution is

12



to be taken for the next iteration. The changes in the initial

values necessary to achieve this step are approximated by

{AQI} i [TR]_I {AQF} (19)

with {AQF} given from Eq. (18).

(e) The first guess for the initial values is incremented by
{AQI}, and the algorithm isrepeated until the calculated final
values approximate those desired to an appropriate degree of

accuracy.

The reference wing chosen for the calculations-was one tested and
analyzed by Runyan and Watkins (Ref. .14), from which are found the parameters
2 2
k = 0.159, (w/wy) =179.1, (w/we) = 0.673, d = 0.039, AR =12, e = 0. 374,

2
W= 32.86, ra = 0.266. From these values plus the aerodynamic loads of Ref. 13

for k = 0. 159, the parameters used in the calculation become = 179.1,
G, = - 7.456 - 52.77i, B, = 83.82, Ez = - 28.36 +1.167i, v, = L.184, '172 = 0.9386 +3. 3471,
5, = 0.6730, "2 = 1. 813 - 0. 5629i.

Lapking any means of making an informed first guess for the 12 unknown
boundary conditions at one end, the first author encountered numerical prob-
lems in attempting this procedure. As can be seen from the control equation,
the last of Egs. (13), solving for the thickness t at any step in the integration of
the differential equations involves a radical, the argument of which must be posi-
tive for real values of t. It was found that an initial guess too far from the
optimum solution resulted in negative arguments of this radical at values of x
less than 1. 0, t‘hus preventing even the initiation of a first iteration.

13



It was next decided to simplify the problem by taking only the real
parts of all aerodynamic terms in the equations. The use of such purely
static airloads will result in a slightly unrealistic situation, but the resulting
problem does retain the essential features of the complete one, while reducing
the number of unknowns by approximately half, from 25 to 13. At the same
time, a corresponding solution was sought by assumed-mode methods, in the
hope of starting with a small number of modes and adding thereto until an
adequate approximation to the optimum solution was found. Each intermediate
solution might provide an initial guess for most of the modal amplitudes in
the next solution.

Under the chosen aerodynamic .approximation, Egs. (13)-(14) are com-
pletely real. Aba;ndoning the state-vector description, one can reorganize
them as two equations of motion, two Euler-Lagrange, or adjoint, equations,

and a third Euler-Lagrange equation, the control equation:

1" n

(ty ) -(ot+a)y - (5115 +B,) = 0
(te')' TV EHY) Y (Bt +62)9 =0

AN A

(t?\r) - (alt +a2) Ar +(Ylt +72) AS =0 (20)
(t?\s) +(8 lt +52) 7\S - (plt +52)Ar =0

"o 1 1
- A - & =0
1-Ay +A @y +Be) tA e - A (Yy+5,6)
The boundary conditions are found from Egs. (15)-(16), with some additional

manipulation of Egs. (20) to provide a specific boundary condition on t:

1 1
= = =A = A =A =0 =0
L y=Yy 2 r r s » X
" " (21

14



Assumed modes that satisfy these boundary conditions are

y(X) = - y_(1 - cos nTrX)
nz=:l,3,.¥1. 2

o0

nTx
A = A (1-
e r§1,3,1.‘1.1(. s
00
_ . nmx (22)
6 (%) —n§=; 6, sin—
* ., nNTXx
As(x) =y Asn sin—
n=]
&, nw
t = t sin— (1-
(x) nzzl o Sin " (1-x)

These series are substituted into Egs. (20), and the Gélerkin procedure is
used to reduce the equations to nonlin;aar algebraic ones in the modal amplitudes.
The first of Egs. (20) is weighted with the modes for y, the second with the modes
for' g, the third with the modes for }\r’ the fourth with the mades for )\s’ and the
fifth with the modes for t(even though it no longer contains t explicit ly).

Since the flutter speed and frequency for the reference wing are changed,
they must be recomputed from the first two equations of Egs. (20) witht=1. A
two-mode Galerkin procedure, with the two modes being the uncoupled funda-
mentals for a uniform beam in bending and torsion, yields a flutter frequency
of 8.41 cps and a flutter speed of 270 fps for a wing with the physical properties
given in Ref. 14. The flutter point is determined by modal coalescence, since
the system is undamped. The same wing with out-of-phase aerodynamic loading
included has a flutter frequency of 25. 3 cps and a flutter speed of 333 fps, as

calculated in Ref. 14, The system parameters for the simplified case are found

15



to be

@, =19.70, o, =-2.182, B =9.219%,

By = - 22.89, ¥

L = 0.1304, v, = 0.1897, (23)

6 =0.07410, 6 _=1.455
1 2

It is emphasized that these values are based on the assumption that
virtually all of the mass of the wing is concentrated in the outer skin. The
equations appropriate for sections with a fixed percentage of the total mass
nonstructural in nature are quite simply derived from the foregoing, with
the added restriction that the nonstructural mass must have the same sectional
radius of gyration as the structural mass. For example, let n represent the
fraction of the total mass at any section that is structurally effective. The
stiffness terms in Eqs. (20) remain unchanged, but the inertial terms are
altered. The equations for the new system are obtained from those for the

old system by redefining the system parameters:

1 !

ozl = ncul, 012 =(1- 11)041 +a2

B, =By By = (L= B +B,
(24)

1 1

Y, = MY, 72=(1-n)vl+72

1 !

- & =(1- 5
8 né , 9 (1 n)51+2

Calculations by the modal method were in fact carried out with 50%of the

total mass effective structurally, in which case the system parameters are

16



= 9.850, =17.668, ‘= 4. 8610,
ozl az 7 ﬁl 4

B, = - 18.28, ¥, =0.06518, v, = 0.2549, (25)

1

&§.=0.03705, 6§ =1 492
1 ) 4

There are two reasons for this alteration of the system. The obvious
one is, of course, that it reflects a more realistic physical situation to have
a certain portion of the total mass represent nonstructural material. However,
it was also desired to avoid certain doubts about the existence of a physically
meaningful solution. A study of the least-weight unswept wing with fixed pure-
torsion flutter speed, as reported in Ref. 12, had shown that there were certain
values of system parameters that gave a negative optimum thickness distribution.
Apportioning the sectional mass as indicated above had proved to be effective in
eliminating trouble with that former solution. In the present case this step was
taken purely as a precautionary measure; no clear evidence as yet suggests
that reasonable solutions do not exist, even when all of the mass is effective
structurally and available for optimization.

The skin thickness distributions for two intermediate modal solutions
are presented in Fig. 4. The number of modes assumed for each computation
is indicated in the figure. The solid curve is the distribution for the least
number of modes possible: one for y and Xr, two for g and KS, and one for t.
The seven modal amplitudes obtained are the roots of a system of seven nonlinear
algebraic equations, which were computed with a subroutine utilizing a least-
squares algorithm due to Powell. 15 The dashed curve shows the distribuﬁon

for a total of ten modes. As stated previously, an initial guess for seven of the

ten modal amplitudes was obtained from the seven-mode solution.
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The savings in total weight are also indicated alongside the plots. With

n defined as before, the weight ratio furnished by Eq. (1) must be altered to read

1

m = nft(x)dx +(1 - 7) (26)
f

Since n= 0.5 for the distributions of Fig. 4, the fractions given represent a
saving of 92 % of the disposable mass. Clearly more modes are necessary to
assure a closer approximation to the actual solution. Nevertheless, these
numbers offer interesting, if slightly unrealistic, evidence of the possibilities

of aeroelastic optimization.
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IV. A DYNAMIC AEROELASTIC CONSTRAINT: PANEL FLUTTER

Consider now a panel, or plate-column, of infinite span as shown in
Fig. 5. The exact solution for the flutter of such a panel with uniform thick-
ness under the action of quasi-steady supersonic airforces is discussed in

Ref. 16. A panel whose deflection is W (x,T) = W(x,T) has its dimensionless

C
equation of motion given by
2 4
oty 8% v . Mo 2 o oaw MC W%y
4+R ) +7\0—8—;+ 0{ > )V_é-;+ D ——-—z—=0 (27)
ox * ox Moo—l 0 o7

Under the assumption that the motion is simple harmonic, Eq. (27) reduces to
the following:

4 2
g-%ﬂ% Q—%+A02—W—Kw=o
ox T 8x % (28)

Boundary conditions are taken as those appropriate for hinged supports:

w=w =0,x=0,1 (29)
In a manner analogous to that discussed in Sect. III, the uniform panel will be used
as the reference system.

Equation (28) for a panel of variable thickness, with neither in-plane loading

nor aerodynamic damping, is altered to read

3 4
82 D (%) azw) +ZqOOC ow M(x) MOC

p
(
9
o> Do ox o 9 My Dy
D\ /M~-1
O [+.0]
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The boundary conditions are

"

w=Dw =0, x=0, 1 (31)

The uniform panel is a special case when Dp(x) =D 0= constant.

The panel under study is a sandwich structure whose geometry and air
speed are held constant at a given altitude, so that several simplifications of

Eq. (30) can be made. It is easily seen that

B Iy (32)
D T
0 0
A =2 CS/D M2 1 = t
0= 2% o\/Mo -1 = constan (33)
MOC2 2
KO = Do Wy = constant (34)

The flutter equation of motion then becomes

2 M (x) 2

0 " ' w
— (tw) +7\0w - KO (w-—) w=20 (35)
0 0

8x2 M

with boundary conditions
(36)

To take into ‘account the mass of the core, it is required that there be a
fixed amount of distributed non-structural mass in the panel which remains at a
fixed proportion of the total mass at every point on the panel. This relation

between skin mass and non-structural mass is expressed as:

M(x) _ Mskin + Mfixed
M0 MO

= nt(x) +(1-m) (37)
20



The rationale for adding a nonstructural portion to the total mass is similar
to that of Sect. III, although for this case no real proof has been discovered
that a physically reasonable solution cannot be found for all possible values
of n.

As before, the constraint equation, Eq. (35), is transformed into an

equivalent set of first-order equations:

W =p
1

p =q/t

' (38)
q =1

Lo
|

2 2
=A@t pIw

2 2 2 2
where o =K0ﬂ(w/w0) , B —KO(I—n) (w/wo) )
The Euler-Lagrange functional for the problem then becomes
A ' /t ' A ' A ' A ﬁaz 2 39
=t -WwW )+ A - + - + -T - + +3 )w
F +W(p ) 1O(q pP) ,q(r q) r[ oP * gHwl  (39)

The Euler-Lagrange equations applied to this F yield

A q/toat A w1
P Y

!

2 2
= - A
KW (ozt+ﬁ)r

¥
A ==A +AA (40)
P w Or
' /
Ag=- A 7/t
d P
1]
A==
T q
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The boundary conditions are

w(0) = q(0) = A (0) = A, (0) = 0
(41)

w(l) = q(l) = A () = A () = 0

The control equation, here the first of Egs. (40), may be used to find t(x) as a function

of the other variables:

A g 1/2
t(x) = [—S—] (42)

+a A
lozrq

From Eq. (42) and Egs. (41) t(x) is found to be zero at each end of the panel,

so the requirement that q = tw”= 0 at the ends is met without requiring that W"= 0.
As will be shown later, this point is important when one uses a modal representation
for the variables in the problem.

Equations (38) and (40) can be reduced to three second order, non-linear
differential equations:

"o
l-wA +ag Aw=0
T T

"on ! 2 2
(tw ) +>\0W -at+p)w=20

(43)

rnon

(tA) -2 A - (ozzt +[32)>\ =0

T Or r
The approach to the solution of this problem follows the same lines as that
described in Sect. III, for many of the same reasons. At present it is being
attempted to solve Eqs. (43) with assumed modes and Galerkink method. The

chosen modes are sine-cosine series that satisfy the boundary conditions for w,

A | andt:
T
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[+ ]
t(x) = Y.t sinnmx
n
n=1

w(x) =2 {a sinmmx +b sin mx sin m'rrx} (44)
m m
m=]
0
A (x)= {c sinpmx +d_sin 7x sin prx
P D

(Note in particular that terms with nonzero second derivative at the ends of the
panel are included in the expressions for w and Kr.) The roots of the nonlinear
algebraic equations for the modal amplitudes are being computed with a sub-
routine based on a procedure due to Marquardt. 17 No meaningful results are
available at the time of writing, although it is clear that the sensitivities are
not so great that éurrent difficulties cannot be overcome. A transition-matrix
approach to Egs. (39)-(41) has also not yet succeeded.

Another interesting aspect of the sandwich-panel optimization problem
involves the question of uniqueness. Turner9 has used a uniqueness assumption
to prove that the optimum thickness distribution must be symmetrical about
the panel midchord. His finite ~element solutions tend to confirm this symmetry
property, although finite~element numerical results do not provide absolute
confirmation with respect to a differential-equation solution. On the other hand,
if the solution is not unique--and uniqﬁeness has by no means been proven in this
case--Turner's proof is invalid. Aside from its other merits, a function-space
solution to this problem offers the possibility of aiding greatly in resolving this

question.

-
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V. CONCLUDING REMARKS

In Ref. 12, two of the present authors discussed the physical significance
that can be attached to the control equation when it is written in a certain way.
For example, for the minimum-weight wing with fixed torsional divergence
speed, as discussed in Sect. II, it can be interpreted as specifying a constant
strain energy per unit thickness over the span of the wing. This constancy of
energy density was proven to exist for a wide class of optimization problems
with static conservative loads by Prager and Taylor (Ref. 7). It was generalized
to include cases with nonconservative static loads in Ref, 12. For conservative
dynamic optimization problems, such ;15 the minimum-weight bar with a
fixed natural frequency of free vibration, the kinetic energy is involved as

well. Then the specific Lagrangian density is constant. 12, 18

When dynamic
aeroelastic constraints are imposed, time-dependent nonconservative loads

are involved, and Table I makes clear that the problem of physical interpretation
may be more difficult. For pure-torsion flutter, the specific Lagrangian

density associated with torsional straining is still constant. In the case of
constraints on eigenvalues associated with panel flutter and bending-torsion
flutter, however, the constant quantities have the form of a specific Lagrangian
density but involve products of the physical variables and their '"adjoints. Whether
or not these observations will advance from being merely interesting to furnishing

genuinely useful procadures for the direct construction of control equations is,

ak present, merely a matter of speculation.
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Although it would be premature to offer any final conclusions, it is
possible to add some general remarks about the numerical methods that have
been tried. Certainly the authors' early opi:irnism12 about the use of the transition~
matrix procedure must be tempered somewhat. It is evident that this method's
sensitivity to initially assumed boundary values, which has frequently accom-
panied its application to problems in optimal control, 1 will remain a major
hurdle to be overcome. Experience gaineci in solving aeroelastic optimization
problems will undoubtedly furnish certain insight, but it may in the long run
prove most useful to adopt more sophisticated steepest-ascent or gradient
methods. With them the possibility of obtaining physically impossible thick~
ness distributions can be easily avoided.

Modal me;chods have already proved to be useful, especially when little

a priori information about the optimum solution is avialable. However,

finding the solutions of the resulting nonliner algebraic equations has not been
a trivial matter. Experience shows that there are definitely right and wrong
ways to increase the number of modes in going from one intermediate solution
to another.

All of these observations can perhaps be summarized in a single one:
a certain amount of analytical work must precede the application of any nuxx;erical
technique, especially since there appears to be no single method that ensures
success in every case. The research worker in aeroelastic optimization will
have to equip his arsenal with a number of numerical methods, and he may have

to try more than one on any given problem.
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Finally, it is evident that much work remains to be done. For example,
modal solutions for the optimum wing of Sect. III and the optimum panel of Sect. IV
must be compared with transition-matrix or steepest-ascent solutions. The results
avdilable to date, although certainly incomplete, already suggest that the full extent
of benefits of aeroelastic optimization in the design of more efficient aerospace

structures has yet to be demonstrated.
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Figure 2.  Optimum distribution of dimensionless skin thickness for the
wing of Fig. 1 with rectangular planform. Analytically derived
curve is compared with points calculated by means of a transition-
matrix numerical method.
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